Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Res Sq ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645021

RESUMEN

Background: Infants with frequent viral and bacterial respiratory infections exhibit compromised immunity to routine immunisations. They are also more likely to develop chronic respiratory diseases in later childhood. This study investigated the feasibility of epigenetic profiling to reveal endotype-specific molecular pathways with potential for early identification and immuno-modulation. Peripharal immune cells from respiratory infection allergy/asthma prone (IAP) infants were retrospectively selected for genome-wide DNA methylation and single nucleotide polymorphism analysis. The IAP infants were enriched for the low vaccine responsiveness (LVR) phenotype (Fishers Exact p-value = 0.01). Results: An endotype signature of 813 differentially methylated regions (DMRs) comprising 238 lead CpG associations (FDR < 0.05) emerged, implicating pathways related to asthma, mucin production, antigen presentation and inflammasome activation. Allelic variation explained only a minor portion of this signature. Stimulation of mononuclear cells with monophosphoryl lipid A (MPLA), a TLR agonist, partially reversing this signature at a subset of CpGs, suggesting the potential for epigenetic remodelling. Conclusions: This proof-of-concept study establishes a foundation for precision endotyping of IAP children and highlights the potential for immune modulation strategies using adjuvants for furture investigation.

2.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630846

RESUMEN

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Asunto(s)
COVID-19 , Humanos , Anciano , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , SARS-CoV-2 , Estudios Prospectivos , Multiómica , Quimiocinas
3.
Clin Shoulder Elb ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38556915

RESUMEN

Background: Reverse total shoulder arthroplasty (rTSA) has gained popularity in recent years and is indicated for a wide variety of shoulder pathologies. However, use of rTSA in patients with "weight-bearing" shoulders that support wheelchair use or crutches has higher risk. The aim of this study was to assess the results of rTSA in such patients. Methods: Between 2005 and 2014, 24 patients (30 shoulders) with weight-bearing shoulders were treated with rTSA at our unit. Patients had cuff arthropathy (n=21), rheumatoid arthritis (n=3), osteoarthritis (n=1), acute fracture (n=3), or fracture sequela (n=2). Postoperatively, patients were advised not to push themselves up and out of their wheelchair for 6 weeks. The study surgeries were performed in 2016, and 21 patients (27 shoulders) who were available for a mean follow-up of 5.6 years (range, 2-10 years). The mean age on surgery day was 78 years (range, 54-90 years). Constant-Murley score improved from 9.4 (range, 2-26) preoperatively to 59.8 (range, 29-80) at the final follow-up (P=0.001). Results: Pain improved from 2/15 (range, 0-8) to 13.8/15 (range, 9-15) (P=0.001). Patient satisfaction (Subjective Shoulder Value) improved from 0.6/10 to 8.7/10 (P=0.001) at final follow-up. Significant improvement in mean range of motion from 46° to 130° of elevation, 13° to 35° of external rotation, and 29° to 78° internal rotation was recorded (P=0.001). Final mean Activities of Daily Living External and Internal Rotation was 32.4/36 (range, 16-36). There were three patients with Sirveaux-Nerot grade-1 (10%) glenoid notching and three with grade 2 (10%). Conclusions: rTSA can be used for treatment of patients with weight-bearing shoulders. Such patients reported pain free movement, resumed daily activities, and high satisfaction rates.

4.
Nat Rev Dis Primers ; 10(1): 8, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332156

RESUMEN

Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.


Asunto(s)
Lesiones del Manguito de los Rotadores , Humanos , Lesiones del Manguito de los Rotadores/cirugía , Artroscopía/métodos , Manguito de los Rotadores/cirugía , Resultado del Tratamiento
5.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405760

RESUMEN

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

6.
J Mol Biol ; 436(4): 168446, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242283

RESUMEN

Adjuvants are vaccine components that can boost the type, magnitude, breadth, and durability of an immune response. We have previously demonstrated that certain adjuvant combinations can act synergistically to enhance and shape immunogenicity including promotion of Th1 and cytotoxic T-cell development. These combinations also promoted protective immunity in vulnerable populations such as newborns. In this study, we employed combined antigen-specific human in vitro models to identify adjuvant combinations that could synergistically promote the expansion of vaccine-specific CD4+ cells, induce cross-presentation on MHC class I, resulting in antigen-specific activation of CD8+ cells, and direct the balance of immune response to favor the production of Th1-promoting cytokines. A screen of 78 adjuvant combinations identified several T cell-potentiating adjuvant combinations. Remarkably, a combination of TLR9 and STING agonists (CpG + 2,3-cGAMP) promoted influenza-specific CD4+ and CD8+ T cell activation and selectively favored production of Th1-polarizing cytokines TNF and IL-12p70 over co-regulated cytokines IL-6 and IL-12p40, respectively. Phenotypic reprogramming towards cDC1-type dendritic cells by CpG + 2,3-cGAMP was also observed. Finally, we characterized the molecular mechanism of this adjuvant combination including the ability of 2,3-cGAMP to enhance DC expression of TLR9 and the dependency of antigen-presenting cell activation on the Sec22b protein important to endoplasmic reticulum-Golgi vesicle trafficking. The identification of the adjuvant combination CpG + 2,3-cGAMP may therefore prove key to the future development of vaccines against respiratory viral infections tailored for the functionally distinct immune systems of vulnerable populations such as older adults and newborns.


Asunto(s)
Adyuvantes Inmunológicos , Reactividad Cruzada , Células TH1 , Desarrollo de Vacunas , Vacunas Virales , Humanos , Recién Nacido , Adyuvantes Inmunológicos/farmacología , Reactividad Cruzada/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/inmunología , Receptor Toll-Like 9 , Células TH1/inmunología , Adolescente , Adulto Joven , Vacunas Virales/inmunología
8.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172101

RESUMEN

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Asunto(s)
Líquidos Corporales , COVID-19 , Femenino , Humanos , SARS-CoV-2 , COVID-19/complicaciones , Linfocitos B , Progresión de la Enfermedad , Fenotipo
9.
Trends Immunol ; 45(1): 32-47, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135599

RESUMEN

The human immune system is a complex network of coordinated components that are crucial for health and disease. Animal models, commonly used to study immunomodulatory agents, are limited by species-specific differences, low throughput, and ethical concerns. In contrast, in vitro modeling of human immune responses can enable species- and population-specific mechanistic studies and translational development within the same study participant. Translational accuracy of in vitro models is enhanced by accounting for genetic, epigenetic, and demographic features such as age, sex, and comorbidity. This review explores various human in vitro immune models, considers evidence that they may resemble human in vivo responses, and assesses their potential to accelerate and de-risk vaccine discovery and development.


Asunto(s)
Vacunación , Vacunas , Animales , Humanos , Inmunidad
10.
iScience ; 26(12): 108387, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047068

RESUMEN

Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.

11.
NPJ Vaccines ; 8(1): 189, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135685

RESUMEN

Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.

12.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986828

RESUMEN

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

14.
NPJ Vaccines ; 8(1): 163, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884538

RESUMEN

Adjuvants can enhance vaccine immunogenicity, but their mechanism of action is often incompletely understood, hampering rapid applicability for pandemic vaccines. Herein, we characterized the cellular and molecular activity of adjuvant formulations available for pre-clinical evaluation, including several developed for global open access. We applied four complementary human in vitro platforms to assess individual and combined adjuvants in unformulated, oil-in-water, and liposomal delivery platforms. Liposomal co-formulation of MPLA and QS-21 was most potent in promoting dendritic cell maturation, selective production of Th1-polarizing cytokines, and activation of SARS-CoV-2 Spike-specific CD4+ and CD8+ T cells in a co-culture assay. Select formulations also significantly enhanced Spike antigen-specific humoral immunity in vivo. This study confirms the utility of the cumulative use of human in vitro tools to predict adjuvanticity potential. Thus, human in vitro modeling may advance public health by accelerating the development of affordable and scalable adjuvants for vaccines tailored to vulnerable populations.

15.
J Allergy Clin Immunol ; 152(5): 1107-1120.e6, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595760

RESUMEN

BACKGROUND: Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE: We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS: A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS: Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS: The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Vacunas Virales , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Modelos Animales de Enfermedad , Inmunogenicidad Vacunal , Dieta , Obesidad , ARN Mensajero , Anticuerpos Antivirales , Anticuerpos Neutralizantes
16.
Front Pediatr ; 11: 1223191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528877

RESUMEN

Severe congenital neutropenia caused by jagunal homolog 1 (JAGN1) mutation is a rare condition resulting from maturation arrest secondary to endoplasmic reticulum stress response from impaired neutrophil protein glycosylation. Here, we report a case of a 4-year-old boy who presented with a history of recurrent infections and manifestations, including recurrent intracranial hemorrhage. A review of similar cases reported in the literature indicates that a bleeding diathesis has not been previously described in these patients. We hypothesize that this newly described association of bleeding complications in this patient with JAGN1 mutation is secondary to defective glycosylation in the normal functioning of platelets or clotting factors. Recurrent infections with intracranial hemorrhage, new focal neurologic defects, or altered mental status in a child should warrant a suspicion for this immunodeficiency for the prompt initiation of treatment and prophylaxis for life-threatening infections or trauma.

17.
STAR Protoc ; 4(3): 102405, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37453068

RESUMEN

High-throughput screening is a powerful platform that can rapidly provide valuable cytotoxic, immunological, and phenotypical information for thousands of compounds. Human peripheral blood mononuclear cells (PBMCs) cultured in autologous plasma can model the human immune response. Here, we describe a protocol to stimulate PBMCs for 72 h and measure cytokine secretion via AlphaLISA assays and cell surface activation marker expression via flow cytometry. Cryopreserved PBMCs are incubated for 72 h with various small molecule libraries and the supernatants are harvested to rapidly measure secretion levels of key cytokines (tumor necrosis factor alpha, interferon gamma, interleukin 10) via the AlphaLISA assay. Almost simultaneously, the cells can be fixated and stained using antibodies against innate immune activation markers (CD80, CD86, HLA-DR, OX40) for analysis via flow cytometry. This multiplexed readout workflow can directly aid in the phenotypic identification and discovery of novel immunomodulators and potential vaccine adjuvant candidates. For complete details on the use and execution of this protocol, please refer to Chew et al.1.

18.
Pharmaceutics ; 15(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37376214

RESUMEN

Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations.

19.
Sci Rep ; 13(1): 10461, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380711

RESUMEN

Respiratory infections are a leading cause of morbidity and mortality in early life, and recurrent infections increase the risk of developing chronic diseases. The maternal environment during pregnancy can impact offspring health, but the factors leading to increased infection proneness have not been well characterized during this period. Steroids have been implicated in respiratory health outcomes and may similarly influence infection susceptibility. Our objective was to describe relationships between maternal steroid levels and offspring infection proneness. Using adjusted Poisson regression models, we evaluated associations between sixteen androgenic and corticosteroid metabolites during pregnancy and offspring respiratory infection incidence across two pre-birth cohorts (N = 774 in VDAART and N = 729 in COPSAC). Steroid metabolites were measured in plasma samples from pregnant mothers across all trimesters of pregnancy by ultrahigh-performance-liquid-chromatography/mass-spectrometry. We conducted further inquiry into associations of steroids with related respiratory outcomes: asthma and lung function spirometry. Higher plasma corticosteroid levels in the third trimester of pregnancy were associated with lower incidence of offspring respiratory infections (P = 4.45 × 10-7 to 0.002) and improved lung function metrics (P = 0.020-0.036). Elevated maternal androgens were generally associated with increased offspring respiratory infections and worse lung function, with some associations demonstrating nominal significance at P < 0.05, but these trends were inconsistent across individual androgens. Increased maternal plasma corticosteroid levels in the late second and third trimesters were associated with lower infections and better lung function in offspring, which may represent a potential avenue for intervention through corticosteroid supplementation in late pregnancy to reduce offspring respiratory infection susceptibility in early life.Clinical Trial Registry information: VDAART and COPSAC were originally conducted as clinical trials; VDAART: ClinicalTrials.gov identifier NCT00920621; COPSAC: ClinicalTrials.gov identifier NCT00798226.


Asunto(s)
Andrógenos , Asma , Femenino , Humanos , Embarazo , Corticoesteroides , Asma/epidemiología , Benchmarking , Cohorte de Nacimiento
20.
iScience ; 26(7): 106909, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37332674

RESUMEN

Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...